Grado de un Polinomio
El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x.
Según su grado los polinomios pueden ser de:
TIPO | EJEMPLO |
PRIMER GRADO | P(x) = 3x + 2 |
SEGUNDO GRADO | P(x) = 2x2 + 3x + 2 |
TERCER GRADO | P(x) = x3 − 2x2 + 3x + 2 |
Tipos de polinomios
1Polinomio nulo:
Es aquel polinomio que tiene todos sus coeficientes nulos.
P(x) = 0x2 + 0x + 0
2Polinomio homogéneo
Es aquel polinomio en el que todos sus términos o monomios son del mismo grado.
P(x) = 2x2 + 3xy
3Polinomio heterogéneo
Es aquel polinomio en el que no todos sus términos no son del mismo grado.
P(x) = 2x3 + 3x2 − 3
4Polinomio completo
Es aquel polinomio que tiene todos los términos desde el término independiente hasta el término de mayor grado.
P(x) = 2x3 + 3x2 + 5x − 3
5Polinomio incompleto
Es aquel polinomio que no tiene todos los términos desde el término independiente hasta el término de mayor grado.
P(x) = 2x3 + 5x − 3
6Polinomio ordenado
Un polinomio está ordenado si los monomios que lo forman están escritos de mayor a menor grado.
P(x) = 2x3 + 5x − 3
7Polinomios iguales
Dos polinomios son iguales si verifican:
Los dos polinomios tienen el mismo grado.
Los coeficientes de los términos del mismo grado son iguales.
P(x) = 2x3 + 5x − 3
Q(x) = 5x − 3 + 2x3
8Polinomios semejantes
Dos polinomios son semejantes si verifican que tienen la misma parte literal.
P(x) = 2x3 + 5x − 3
Q(x) = 3x3 + 7x − 2
Valor numérico de un polinomio
Es el resultado que obtenemos al sustituir la variable x por un número cualquiera.
P(x) = 2x3 + 5x − 3 ; x = 1
P(1) = 2 · 13 + 5 · 1 − 3 = 2 + 5 − 3 = 4
De: http://www.vitutor.com/ab/p/a_4.html
No hay comentarios:
Publicar un comentario